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ABSTRACT

We prove that the upper and lower values defined by Elliot-Kalton 19] for

a two-person, zero-sun differential game are the viscosity solutions of the

upper and lower Isaacs equations, respectively. As an application we obtain

fairly simple representation formulas for the viscosity solutions of certain

Hamilton-Jacobi PDE. We also employ these formulas to study a problem from

geometric optics.
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SIGNIFICANCE AND EXPLANATION

Recent work by the authors and others has demonstrated the connections

between the dynamic programming approach for two-person, zero-sum differential

games and the new notion of"'-viscosityW'81olutions of Hamilton-Jacobi PDE,'

introduced by N. G. Crandall and P. L. Lions. The basic idea is that the

dynamic programming optimality conditions imply that the 'valuesh of a two-

person, zero-sum differential game are viscosity solutions of appropriate

PDE. This paper proves the above, when the values of the differential games

are defined following Elliott-Kalton. This results in a great simplification

in the statements and proofs, as the definitions are explicit and do not

entail any kind of approximations. Moreover, as an application of the above

results, the paper contains a representation formula for the solution of a

fully nonlinear first-order PDE. This is then used to prove results about the

level sets of solutions of Hamilton-Jacobi equations with homogeneous

Hamiltonians. These results are also related to the theory of Huygen's

principle and geometric optics. C
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1. Introduction

Recent work by the authors and others has demonstrated

the connections between the dynamic programming approach to

two-person, zero-sum differential games and the new notion of

"viscosity" solutions of Hamilton-Jacobi PDE, introduced in

Crandall-Lions [8]. The formal relationships here were ob-

served by Isaacs in the early 1950's (cf. [18)): he showed

that if the values of various differential games are regular

enough, then they solve certain first order PDE with "max-min"

or "min-max" type nonlinearity (the Isaacs equations). The

problem here is that usually the value functions are not

sufficiently smooth to make sense of these PDE in any obvious

way. Many later papers in the subject have worked around

this difficulty: see especially Fleming [13), [143, Friedman

[15], [16], Elliott-Kalton [9]-[11], Krassovski-Subbotin [20],

Subbotin [263, etc., etc. and the references therein.

Recently, however, M. Crandall and P.L. Lions [81 have

discovered a new notion of weak or so-called "viscosity"

solution for Hamilton-Jacobi equations, and, most importantly,

have proved uniqueness of such a solution in a wide variety of

circumstances. This concept was reconsidered and simplified

in part by Crandall, Evans, Lions [7], whose approach we follow

below. Additionally, Lions in his new book [21] has made the

fundamental observation that the dvnamic programming optimality

1Department of Mathematics, University of Maryland, College
Park, MD 20742. Supported in part by National Science
Foundation Grant MCS-81-02846 and the Alfred P. Sloan Foundation.
2Sponsored by the United States Army under Contract No.
DAAG29-80-C-0041.
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condition for the value in differential control theory problems

implies that this value function is the viscosity solution of

the associated Hamilton-Jacobi-Bellman PDE: see (21, p. 53-541

for more explanation. Some related papers are Lions [23],

Lions-Nisio [24], Capuzzo Dolcetta-Evans (5], Barles (2],

Capuzzo Dolcetta [4], Capuzzo Dolcetta-Ishii [6], etc.

The foregoing considerations turn out to extend to dif-

ferential game theory, where additional complications arise even

as to the definition of the value functions. Nevertheless

the basic idea is still valid, that the dynamic programming

optimality conditions imply that the values are viscosity

solutions of appropriate PDE. See Souganidis [27] for a demon-

stration of this based on both the Fleming and the Friedman

definitions of upper and lower values for a differential game,

and Barron-Evans-Jensen [3] for a different proof for the

Friedman definition. Some similar results are to be found in

P.L. Lions [22].

The present paper represents a simplication of this pre-

vious'work. The new approach here is to define the values of

the differential game following Elliott-Kalton [91-C11] (cf.

Roxin [25]) rather than Fleming or Friedman. This results in

a great simplification in the statements and proofs, as the

definitions are explicit and do not entail any kind of

approximations.

The appropriate terminology is introduced in §2. In q3

we reproduce (and simplify a bit) Elliott and Kalton's proof

of the optimality conditions and of the Lipschitz continuity of

the upper and lower value functions. Then in §4 we prove

that the value functionsare the (unique) viscosity solutions

-2-



of the appropriate Isaacs equations; our demonstration of

this owes a lot to previous papers (especially [31 and r27]),

but is essentially simpler in many ways.

The remainder of the paper is devoted to some applications.

First, in JS we discuss-(cf. Fleming (14]) how to write a

fairly arbitrary Hamilton-Jacobi equation as the upper Isaacs

equation for some differential game, so that the viscosity

solution is this upper value. The consequence is a kind

of representation formula for the solution of the origin-

al, fully nonlinear first-order PDE. We thereafter in §7

employ this representation formula to prove results about the

level sets of solutions to Hamilton-Jacobi equations with

homogeneous Hainiltonians; these questions we motivate in §6

with a discussion of geometric optics and Huygen's principle.

Part of the point of this application is to show that the

game theory methods provide mathematically rigorous and rela-

tively simple procedures for justifying various formal calcula-

tions concerning Hamilton-Jacobi equations. Roughly speakinp,

the trajectories for the differential game serve as "generalized

characteristics" existing in the large.

We should note also that our hypotheses throughout-are

almost always stronger than is really necessary, since we wish

to display the methods in the clearest setting. The interested

reader should consult Ishii [19] for some extensions of our

results to differential game problems under much weaker hypotheses.

We conclude by recording here the relevant definition

of viscosity solutions, from [7]. [8], [3].

-3-
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Assume H: [O,TJ x IRm xIRm -.R is continuous, and

g: It .]Rm  is bounded, uniformly continuous. A bounded,

uniformly continuous function u: [0,T] x m- IRm is

called a viscosity solution of the Hamilton-Jacobi equation

(1.1) ut + H(t,x,Du) 0 in (0,T) x IRm

(HJ)

(1.2) u(T,x) g(x) in Rm

provided (1.2) holds and for each * E CI((O,T) x Rm )

(a) if u-0 attains a local maximum at

(t0,x0) E (0,T) x Rm , then

(1.3) *t(tO,xO) + H(t0 ,x0,DO(t 0 ,x0 )) . 0,

and

(b) if u-o attains a local minimum at

(to,x0) E (0,T) x ]Rm , then

(1.4) #t(tO,xO) + H(t0,x0,DO(t0,x0 )) _5 0.

See [7J, [8] for a proof that if u is a viscosity solution of

(HJ) and if u is differentiable at some point (t0 ,x0),

then

ut(t0 ,x0) + H(t0 ,x0,Du(t0 ,x0)) 0.

-4-
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Remark. We have described here the appr, rimi e* 9-' tn for

the terminal value problem (1.1), (1.2); this is, as we shall

see, the kind of PDE arising in game theory applications. A

viscosity solution of the initial value problem (1.1),

(1.2)' u(xO) g(x) in ]R

is defined by reversing the inequalities in (1.3), (1.4).

-5-



2. Terminology

We mostly adopt here the notation of Elliott-Kalton r91.

(a) Definition of the differential game

Fix T>t O, x E 3Rm and consider the differential

equation

i(s) f(xx(s),y(s),z(s)) t < s < T

(ODE)

x(t) x.

Here

y: [t,T] - Y

and

z: ft,T] - Z

are given measurable functions (called the controls employed

by players I and II, respectively) and Y c ]Rk, Z c IR

are given compact sets. We assume

f: (0,T] x Mm x y x Z - m

is uniform, continuous, with

If(t,x,y,z)I _ C1

(2.1)

If(t,x,y,z) - f(t, ,y,z)l !S ClIx-4t

for some constant C1  and all 0-tiT, x,AJR1 m , y(Y, z(Z.

-6-
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The (unique) solution x(.) of (ODE) is the response of the

system to the controls y(.), z(.).

Associated with (ODE) is the payoff functional

MP P(y,z) X P ,x (y(-.,z(.))6 Ih(s,x(s),y(s),z(s))ds + ~ (T)

where g: Rm IR satisfies

Ig(x)l ! C2
(2.2)

jg(x) - g(*)l S C2 1x-xl

and h: [0,T3 x x Yx Z - M is uniformly continuous, with

* Ih(txyz)I S C3
(2.3)

* A

Ih(t,x,y,z) - h(tx,y,z)l S C3Ix-xI

for constants C2,C3 and all 0CtST, xx(]Rm, yY, zQZ. The goal

.of plaver I is to maximize P and the foal of player II is to

minimize P.

(b) The upper and lower values

Set

M(t) w (y: Ct,T * YI y measurable)

N(t) a (z: t,T] * ZI z measurable) i

these are the sets of all controls for I and 1, respectively.

We will henceforth identify any two controls which agree a.e.

i 7-

f , _ .



Following now Varaiva [29). Roxin [25) and Elliott-Kalton [9)

we define any mapping

a: N(t) * M(t)

to be a strategy for I (beginning at time t) provided for each

ts:5T and z,EN(t):

z(T) ;(T) for a.e. t T S s

(2.4)

implies a[z](x) = [z](T) for a.e. t T s s

Similarly a mapping

8: M(t) N(t)

is a strategy for II (beginning at time t) provided for each

t~sST and y,9EM(t):Ly( ) = y(T) for a.e. t s T s s

(2.5)

implies PCy](T) I[y](T) for a.e. t S T < S

Denote by r(t) the set of all strategies for I and by A(t)

the set of all strategies for II, beginning at time t.

Finally define

V(t,x) a inf sup P(y, ply])P(A(t) y(M(t)

(2.6)

= inf sup () h(s,x(s),y(s),S[y](s))ds + g(x(T))},
P (At) y(M(t) t

x(.) solving (ODE) for y(.) and z(.)

-8-
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Analogously set

U(t,x) V sup inf P(a[z], z)
amrt) zfN~t)

(2.7)

sup inf (I h(s,x(s),azJ(s),z(s))ds + g(x(T))
ar(t) zEN(t) )

x(') solving (ODE) with z(.) and y(.) = a[zl(.).

We call V the lower value and U the upper value of the

differential game (ODE)," (P). Our goal is to show that V and

U solve certain nonlinear PDE (in the viscosity sense).

-9-
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3. Properties of the upper and lower values

The results in this section are proved in Elliott-Kalton [10].

We reproduce and simplify slightly their arguments for the read-

er's convenience.

Theorem 3.1 For each 05t<t+aET and x(mM

(3.1) V(t,x) = inf sup I h(s,x(s),y(s),6[yJ(s))ds + V(t+a,x(t+a))}P(awt yEM(t) t
t

and

t,+a
(3.2) U(t,x) = sup inf {j h(s,x(s),c[z](s),z(s))ds + U(t+,x(t+))}

cEr(t) z(N(t) t

These are the dynamic programming optimality conditions.

Remark. In (3.1) and (3.2), as elsewhere below, we implicitly

mean x(.) to solve (ODE) with the appropriate controls y(-)

and' z(.).

Proof. We prove (3.1) only, as the proof of (3.2) is similar.

Set

t+.a
r

(3.3) W(t,x) a inf sup {J h(s,x(s),y(s),B[y)(s))ds + V(t+a,x(t+o))}

and fix z>O. Then there exists 6A(t) such that

t+a
(3.4) W(t,x) :t sup {f h(s,x(s),y(s),6[y](s))ds + V(t+a,x(t+o))} - C

y(M t

-10-
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Also, for each .wVRm

(T
V(t+o,w) inf sup ( h(s,x(s),y(s),B0y](s))ds + g(x(T)),

PEA(ta) y(M(t*a) t+aJ

x(C) solving (ODE) on (t+c,T), with the initial condition

x(t+a) = w. Thus there exists 6w  ( Aft+o) for which

(3.5) V(t4 ,w) % sup T h(sx(s),y(s),6wy](s))ds + g(x(T))} - c

t+0

Define E((t) this way: for each yEM(t) set

6[y](s) t S s ' t+o

F[y](s)

6 x(t+V)[Ey]S) t+o < s ' T

Consequently for any yE(t), (3.' ) and (3.5) imply

T

W(tx) t J h(s,x(s),y(s),B[y](s))ds + g(x(T)) - 2

t

so that

sup {f h(s,x(s),y(s),0[y](s))ds + g(x(T))) 5 W(t,x) + 2c
yEH(t)

Hence

(3.6) V(t,x) W(t,x) + 2t.

On the other hand there exists 9(6(t) for which

-11-I



(3.7) MItX) : sup rj h(s,x(s),Y(S),BtY)(S))ds + g(x(T))1 -c

Thus

W(t'x) f- sup~ [rJ h(s,x(s),y(s) IBEYJ(s))ds + V(t4,j,x(t+a)))

and consequently there eists yj(M(t) such that

(3.8) W(t'x) f- J h(s,x(s),yl(s),8Cyl]Cs))ds + V(t+oax(t~o)) + c

t

Now for each yEM(t+o) define k(M(t) byIYl(s) t !!- s < c

y(s) t+a f- s 5 T

and then define KEaft+o) by

*yj(s. a P[91 (s) (t+c, f- s -S T)

Now

V(t4v,X(t+)) :5Suphsxs,~) y() + g(x(T))1

and so there exists y2EM(t+a) for which

(3.9) V(t+o,x(t+o))!sj h(s,x(s),IY2 (s),If y2 3(s)ds + jg(x(T)) + r

t+a

-12-



Define y(M(t) by

r y l (s) t Z s < t+o

IY 2 (s) t+Q 5 s 5 T

Then (3.8) and (3.9) yield

fT
(3.10) W(t,x) 1 h(s,x(s),y(s),B[y](s))ds + g(x(T)) + 2,

t

and so (3.7) implies

W(t,x) 5 V(t,x) + 3e

This and (3.6) complete the proof.

Next we examine the boundedness and continuity of the

value functions:

Theorem 3.2 There exists a constant C4  such that

(3.1) IV(tx)l, Ju(t,x)I t C4

(3.12) IV(t,x) - V(iq)j, Iu(t,x) - u(0,;)j s C4 (It-fl + tx-I)

for all Ost,t:T, xx( m.

Proof

We give the proof for U only since similar arguments work

for V.

-13-
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First, owing to (2.2) and (2.3) we have

JP(y,z)l f TC3 + C2

for all y(')fM(t),z(-)EN(t). This at once implies estimate

(3.11) for V.

To prove (3.12) for V let us first choose xlx 2EIR 
n ,

0!t 1 t2 !T. Pick e>O and then select aEr(t1 ) so that

(3.13) U(tl,xI ) f inf P(a[z],z) +e
z(N(t 1 )

Pick some z0 QZ, and then define for any zEN(t2 )

z N(t )

by

z~) I z0  tl s < t2
0 1t 2

t2  s

Now define aEr(t 2) by setting for each zEN(t 2 )

cL[z] a[-Z] (t2  s f T)

Finally select z(N(t 2 ) so that

(3.14) U(t2 ,x2 ) P(a[z],z) -

According to (3.13)

-14-
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(3.15) U(t1,x1 ) 5~ []Z +

Now let x1(-) solvetdx ( s)
ds f(s,x (s),a[z')(s),'(S)) (t1 <c s < T)

x 1(ti) x1

and let x2(*) solvetdx2 (s) fsxS'az()zS)
f~s~~s) ct~l~sz~s) ( 2 < s <T)

x2(t2) X

We have

Furthermore, since z=z and a~z] a[^z] on (t21 )

(3.16) x 1 (S) - X2 (s)I CIx 1 (t2) -2 15 C( Iti-t 2J + I )l-~ (t2<s, i')

Thus (3.14) and (3.15) imply



U(t ,Xj) - U(t2,x2 ) - P(W'ZC,) - P(a[z],z) + 2e

2.2 
h(s'x1(s) a [7](s) '(s) )ds

1

(3.17) + [h(SXf(S),T[zl(s),z(s)) - h(s,x2 (s),Z[z](s),z(s))Jds
t2

+ g(x1 (T)) - g(x2 (T)) + 2e

:SC(itl-t 21 + 1x1-x2 1) + 2e 9

by (2.1)-(2.3) and (3.16).

On the other hand let us select ar(t2) such that

(3.18) U(t2 ,x2) S inf P(a[z],z) + e
zEN(t 2)

For each z(N(t%) define z(N(t2) by

z(s) z(s) (t 2 5 s T)

Fix any y0 (Y and then define afr(t) by

o
[a z] t2 S s S T .

t2  sT

Now choose z(N(t I) so that

(3.19) U(tl,X1) :t P(^[zJ,z) - e

-16-
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According to (3.18)

(3.20) U(t 2 ,x 2 ) < P(a[z],z) + C

Let xI ( •) solve

dx 1(S)
ds f(s'xl(s)a[z](s),z(s)) (t < s < T)

x1(t1 ) 1

and let x2 (.) solve

"dx2 (Cs)
d2s f(s,x2(s),a[z](s),z(s)) (t? < s < T)

x2(t 2 ) :x 2

As above jxl(t 2 )-Xll _ ClItl-t 21 ; and since z z,

-[z] = a(z] on (t2,T),

(3.21) Ixl(s)-x 2 (S)i- CIXl(t 2 )-x) -- C( - + 1-x2 !) (t2 - s T)

Therefore (3.18) and (3.20) imply

-17-
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U~~t2,x2) ~ - ~ 1 x)'P(ai(~,z) - P('(zlz) + 2e
ut2 t2 tll %a

2-f t2h(s,xl(s),^a(zJ(s),z(s))ds
ti1

T
f h(s,x (s),atzJ(s),z(s)) - h(s,x (s),a~z3(s),z(s))]ds

t2

+ g(x2CT)) - g(x1 (T)) + 2c

S C(1t1-t2 l + Ixl-xlI) + 2&

by (2.1)-(2.3) and (3.21).

This and (3.17) prove estimate (3.12) for U.

&am, w



4. Viscosity solutions of Isaacs' equations

Next is the observation that the dynamic programming

optimality conditions imply U and V to be viscosity solu-

tions of certain PDE.

Theorem 4.1 (a) U is the viscosity solution of the upper

Isaacs equation

U H (tx,DU) : 0 (0 : t S T, x E Rm )

(I)+

U(T,x) = g(x) (x E Wm),

where

H (t,x,p) a min max { f(t,x,y,z)*p + h(t,xy,z)J
zEZ y(Y

is the upper Hamiltonian •

(b) V is the viscosity solution of the lower Isaacs equation

V.,+ H-(tx,DV) =0 (0 t T, x E1m)
Mv-

(i)"

V(T,x) g(x) (x E )

where

JC(txp) * max min (f(tx,y,z)-p + h(t,xyz))
yEY z(Z

is the lower Hamiltonian.

-19-

A ... . M "'-~jT~ ~



Corollary 4.2 (i V 5U (0etT, x]m)

(ii) If for all 0 : t : T, x,p ER
m

H +(t,x,p) H-(t,x,p) , (minimax condition)

then

U a V

The Corollary follows from the standard comparison and uniqueness

theorems for viscosity solutions: see [7), [8), [21), r27].

Proof of Theorem 4.1

We prove assertion (a) only.

Let * ( CI((0,T) x m ) and suppose U - * attains a

local maximum at (t0,x0 ) ( (0,T) x m. We must prove

(4.1) *t(t0,xO) + H+(toxD,DO(toxo)) t 0

Should this fail, there would exist some 8>0 so that

(4.2) 4t(tO,xO) + H+(t 0,x0,D4(t 0,x0 )) ' -0 < 0.

According to Lemma 4.3 (a) (stated and proved below) this im-

plies that for each sufficiently small a>0 and all a(r(t 0 )

t +03.0
(4.3) J h(s,x(s),a~z)(s),z(s)) + f(s,.x(s),a[zj(s),z(s)) r(~~)

+ *t(Sx(s))Jds :5

-20-
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for some z*N(t0) Thus

0

+ f(s,x(s),a~z](s),z(s))*E*(s,x(s))+ *t(s,x(s))1ds)~ !5

However Theorem 3.1 states

t 0+0
(4.5) Uft0, 0  SUP inf h(s,x(s),a~z](s),z(s))ds

00 air (t ) zEN(to~

+ Uft 0 4a, x (t 0 "M

Since U-O has a local maximum at (t 0,x0), we have for a

small enough that

(4.6) M t0,X0 ) - *(t0,x0) t U(t 0 9 x(t0+a)) - *(to+a, x(t 0 +a))

where x(-) solves (ODE) on (t0,t0+c) for any y(-), z(-),

with the initial condition x(t 0  xo. Now (4..5) and (4.6) Five

rt 0+0
(4.7) SUP inf I J h(s,x(s),a~z)(s),z(s))ds + *(e00a, x(t0+o))

0 
2

-( 0,x10) 0

But

(4.8) *(t04a,x(t0+v)) - *t0,x0)) iff (s~~srz(,))' (
to0

-21-



nmd s0 (4.7) contradicts (4.14). Thus (14.1) must in fact be valid.

m
Next, suppose U-4 has a local minimum at (t0*,ME0,T)x1R

We must demonstrate

(4.9) *(t oixo) + H +(to 9x0,D#(t0,x0 )) 5 0

and so will assume to the contrary that

(4.10) *t (t o'xo) + H+(t0,x0,D#(t0 ,x0 )) :t > 0

for some constant 0>0. Then Lemma 4.3(b) asserts that there

exists for all sufficiently small aoO some air(t0) such that

. td0*a
(4.11) J h(s,x(s),atzl~s),z(s)) + f(s,x(s),a~z)(s),z(s))-D(s,x(s))

to ,t(s,x(s))]Ids k

for all zfN(t 0) Consequently

(4.12) SUP mtf Jh(s~x(s)a~z(s)z(s))

amrt ) zEN(t)

+ f(s,x(s),az](s),z(s))E* (s,x(s)) + *t(s,x(s))ds} 'T

But since U-# has a local minimum at (t 0 9x0) we have for

small enough a>O that

U(to3 X0) - (t0,x0) i U(t 0 +ox(t0+0)) - *(t0 +ax(t 0+0))

x(-) solving (ODE) on (t05t0 +a) for any y(-), z(-), with the

-22-



initial condition x(t 0  x0. This and (4.5) imply

t 0 +C
SUP inf fJ h~~~)az3s,~)d + t~~~na)st~n) 0.

airit ) zEN(t )It

Recalling now (4. 8) , we see that this contradicts (4. 12) , and thus

(4.9) must hold.
a

Lemma 4.3 Assume *is C.

(a) If *satisfies (4.2), then for all sufficiently small

a>O there exists z(N(t0) such that (4.3) holds for all afr(t 0)

(b) If * satisfies (4.10), then for all sufficiently small

a>0 there exists art 0) such that (4.11) holds for all zE14(t 0)

Proof Set

A(t,x,y,z) t t(t,x) + f(t,x,y,z)-D4(t,x)+h(t,x,y,z).

(a) According to (4.2.)

min max A(t0,x0 ,y,z) t- -e < 0.
ZEZ YyY

Hence there exists some z*EZ such that

mav.A(t,,x,,y,z*) f- -e
Yy

Since A is uniformly continuous, we have also

max A(s,x(s),y,z*) -5 -

provided t 0lslt 0+a (for any'. small o>0) and x(-) solves

-23-
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(ODE) on (t0,t0 +a) for any yC.), z(-), with the initial

condition x(t0) = x0. Hence for z(') = z* and any a f(t 0)

*t(s,x(s)) + f(s,x(s),a[z](s),z(s)).-D (s,x(s)) + h(s,x(s),a[z](s),z(s)) 
-

for t0 5s5t 0+a. Integrate this from t0 to t0+a to obtain

(4.3).

(b) Inequality (4.10) reads

min max A(t 0 ,x0,yz) 9 e > 0.
zEZ yEY

Hence for each zEZ there exists y=y(z)EY such that

A(t0 ,x0,yz) : 0 .

Since A is uniformly continuous we have in fact

A ( t o , o y ,j? ) 4

for all :EB(z,r)MZ and some r = r(z)>O. Because Z is compact

there exist finitely many distinct points z1,.. . (ZnEZ Vl,...YnEY, and

rl,... rn>0 such that

n
Z c U B(zi,r i )

i=l

and

A(t0 ,x0 ,Yi,) 3 for < E(zi,r )

Define

: Z - Y

-24-
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by setting

$(z) Yk

if

k-i
B(yk,rk) \ U B(yi,r i ) tk = 1,...,n)

Thus
30

A(toXo,4(z),Z) 3- V

for all zEZ. Since A is uniformly continuous we therefore

have for each sufficiently small 
o>O

(4.13) A(s,x(s), (Z),Z) - 2

for all zEZ, to<sto+a, and any solution x() of (ODE)

on (to,to+ o) for any y(), z(), with initial condition

x(t0)= x0.

Finally define aEF(t 0 ) this way:

a[z](s) = O(Z(s))

for each zEN(t 0 ), to0 ssT. Owing o (4.13)

(t 0 < S +o)

for each zEN(t 0 ). Integrate this inequality from to to

t 0 +a to arrive at (4.11).
D
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5. Representation of solutions of Hamilton-Jacobi equations

We next employ the theory from §2-4 to derive a represen-

tation formula for the viscosity solution of

ut + H(t,x,Du) 0

(5.1) Nx I ] m , G<t< T)

u(Ox) g(x).

Here g: IRm - R

and. H: [0,T] x ]Rm x IRm - ]R

satisfy

Ig(x)l 5 C5

(5.2)

Ig(x) - g(c)l - C51x- I

and

IH(t,x,0)l - C5

(5.3)

IH(t,x,p) - H(:txp)I - C 5(It-fl + Ix-^l + Ip-fl)

for some constant C 5 and all 0Et, t"T, x, x, p, p IF .

Then results of Crandall-Lions [8], Lions [21], and Souganidis

[271, [28) imply the existence of a unique viscosity solution

u of (5.1), with

-26-
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Iu(t,x)I C 6

(5.4) tutx
lu~tx) -U(Z^,;)I fs C G(It41 + lx-xJl)

for some constant C 6.

First we write H as the max-min of appropriate affine

functions:

Lemma 5.1 For each O-.t.5T, x(ED m and constant A-.O,

(5.5) H(t,x,p) max min f f(y).p + h~t,x,y,z)}
zEZ yEY

if IpI :5 A, where

Y =B(0,1) CI

Z B(O,A ) c I
(5.6)

f(y) C y

h(t,x,y,z) H(t,x,z) - Cr3y.z

Proof Since

FI(t,x,z) -11(t,x~p) C~lp-zl (z fR m)

we have for 1PI A,

H(t,x,p) max I H(t,x,z) -CSIP-71 I
z(Z

max min (!x,z) + Cy.(p-Z)}
ZzZ VfY

-27-

- di



Remark See Fleming [14, p. 996-1000] or Evans [12] for

other,more complicated ways of writing a nonlinear function

as the max-min (or min-max) of affine mappings. 0

Note that f and h satisfy (2.1) and (2.3), respectively.

Now set

H(t,x,p) max min f !(y).p + h(t,x,y,z)} (p ( m

z(Z yEY

for A = C6 from (5.4), y, Z, f, h from (5.6). Then

H(t,x,p) H(t,x,p) provided IPI ! C6

As u satisfies (5.4) it follows from the theory in [81 that

u is also the unique viscosity solution of

U t + H(t,x,Du) 0

(x E IR,0 < t < T)

u(x,0) g(x)

Hence

(5.7) v(t,x) u(T-t,x)

is the viscosity solution of

r vt + H+ (t,x,Dv) 
0

(x IRm 0 < t < T)

v(x,T) g(x)

-28-



for

+
H (t,x,p) min max {-f(y).p - h(T-t,x,y,z)}

zfZ y(Y

Thus the developments in §2-4 imply

v(t,x) U(tx)

T
'sup inf _-| h(T-s,x(s),aCz](s),z(s))ds + g(x(T))}

CL rt) z NE ) t

where x(.) solves

ks) = -f(y(s)) -C5Y(s) (t < s < T)

x(t) = x

for y(.) = a[z]; that is,

X(S) = x - C5 j [z](r)dr (t < s < T).

t

Recall now (5.7) to complete the proof of

Theorem 5.2. We have for each 0t T and x E ]m

(5.8) u(t,x) sup inf C . h(T-s,x(s),a(z](s),z(s))ds + g(x(T)))
a(r(T-t) zEN(T-t) f-t

where for each z(N(T-t) and y a(z] E M(T-t), x(.) solvest i(s) -C5Y(S) T - t < s < T

x(T-t) x

-29-
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Remiark A formula analogous to (5.8) obtains for any choices

of Y, Z, f and h for which (5.5) holds (even if f = f(t,x,y,z)).

The representation we have taken has particularly simple

dynamics: note that player II can affect only the running

cost h.
a

An easy application is the following domain of dependence

assertion.

Corollary 5.3 (cf. [8J). Assume H satisfies (5.3) and that

satisfy (5.2). Suppose also that u is the viscosity solution

of (5.1) and u is the viscosity solution of

at +  (t,x,DOi) 0

(5.1)' (x Rm, 0 < t < T)

(O,x) ^(x)

Fix xE( m , Ot-ST. Then if

g 9 g on B(x,tC 5)

we have

u(x,t) Ca(x,t)

Proof By Theorem 5.2

(T
u(tx) a SUp inf (-J h(T-s,x(s),a[z](s),z(s))ds + (xT))}i afr(T-t) zEN(T-t)

T-t

-30-
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where for r, N, h, etc. as above and for each zEN(T-t),

y a [z] E M(T-t), x solves (5.9). But then

jx(T) - xf tC 5

and so

i(x(T)) =g(x(T)).

Thus

(T

U(t,x) sup inf f -1 h(T-s,x(s),a[z](s),z(s))ds + g(x(T))}
aEr(T-t) z(N(T-t) JT-t

: u(t,x), by Theorem 5.2 again.

For an application in §6,7 we will require a modification

of (5.5), (5.6) in the case that H(t,x,-) is positively

homogeneous of degree one:

Lemma 5.4 Suppose in addition to (5.3) that

H(t,x,Xp) XH(t,x,p) (0 5 t 5 T, x, p E m k 0)-

Then there exist compact sets Ycm 2m ZcIR2m and

f: [0,T] x 3m x y x Z - Rm

satisfying (2.1) such that

H(t,x,p) max min f f(t,x,y,z).p)
z(Z y(Y

-31-



m

for all O5t:5T, x,pE]R

Proof If ITlI 1, then according to Lemma 5.1

H(t,x,r) max min ff(yl).r + h(t,x,vl,zl)}
z 1EZ1 ylEY 1

for

Y1 Z B(0,1) c R

f(y1 ) =C 5y1

h~tlxly 1,z1 ) H(t,x,z 1  C Csy 1. 1

Thus for any p9O

H~t,x,p) =IpI H(t,x,-1 -)

-max min f f (y1 ) .p + h~t x,yl, zl) 1I
z 1 (Z y1 EY 1

Choose 0 7>0 such that

hI C

for all 0. t5T, X RM z 1 E71, EY 1, Then

H-(t,x,p) max min f(yl).p + C.71pj + (h(t,x,yl,z-1) - C 7)1p1
z 1EZ1 YlEY I

max min mdx ini m ( - + C.,Z.,.P + (h(t,X.y1.z IC)YP

1~ 1~ yY1 1'2 '

-32-



where

y Z B(O,1) x B(O,1) 
c

z ( 2 1 y (yl'y 2)

f(t,x,y,Z) f(Yi) + Cz2 + (h(t'x'yl'Zl) - 7)Y2

I + C7z2 + (H(t,x,z1 ) - C5Y!'Z 1 - C7)Y ?

Note that the interchanging 
of min and max above is

ylEYI z2EZI

valid.

-33-
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6. Propagation of disturbances and Huygen's principle

As an application of the representation formulas developed

in §5 we will discuss in the next section the level sets of

solutions of Hamilton-Jacobi equations with Hamiltonians

positively homogeneous of degree one. The following considera-

tions- adapted directly from Gelfand-Fomin [17, p. 208-217]

and Arnold [1, p. 248-258] - provide motivation.

Regard Rm as a heterogeneous, nonisotropic medium,

comprised of points at each moment in either an "excited" or

a "rest" state. Once any given point x is excited by a dis-

turbance propagating in the medium, it thereafter remains ex-

cited and so itself serve as a source for further disturbances

emanating from it. We wish to describe mathematically the

evolution of the disturbances from a given excited set.

For this let L(x,z) denote the reciprocal of the

speed of the disturbance leaving x in the direction ZES M

Extend L to be positively homogeneous of degree one and set

I(x) {z ( Im IL(x,z) = 1)

I(x) is the indicatrix of L at x. We will assume this to

be the smooth boundary of an open, strictly convex set. We

consider also the figuratrix

F(x) {p D zL(x,z) z E I(x))

-34-
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Next define the Hamiltonian H so that

fH(x,p) 1 if p F(x)

H(x,') is positively homogeneous of degree one.

This is the standard Hamiltonian for the parametric Lagrangian

L (see Young [30, p. 50-51]), and the reader should check

that

(6.1) H(x,p) sup f z.pZ I(x)}

Next suppose r0  denotes the set of points excited

initially and rt 2 r0  the set of points excited at time
+ Im

t>O. We introduce a function u: R+ x IR -+ JR such that

(6.2) r t  = {xlu(t,x) > 0}

and

(6.3) it (xlu(t,x) = 01 art

for each t:0; here t is the wave front at time t. We

will show heuristically that u solves a Hamilton-Jacobi

equation.

To see this, fix any t>O, xEyt, and 0'At<t. According

to Huygen's principle Et is the envelope of the wavefronts

emanating from points in t-tt: see [1, p. 250]. Thus ther'e

exists yit-,t such that y+AtT(y) is - up to error terms

of order O(At) - tangent to T at x. So for some

ZMIy),

-35-
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y + (At)z is (approximately) equal to x

and

p -Du(t,x) is (approximately) normal to y + AtT(y) at x

Consequently

(6.4) H(x,p) p-z + o(l) as At - 0

On the other hand

o(At) =u(t-At, x-(At)z) - 1u(t,x)

z C-At)Cut (t,x) + Du(t,x)-z) + o(At)

and so

u't (t,x) p-z + o~i) as At -0

This and (6.4) give

(6.5) ut+ j4(x,Du) 0

for

Note that the reasoning here works just as well on the -,etf;

fu~a) for each real number a. tmhNus (6.5) holds in afll of

RnX (01T).

In (6.5) we have derived the required 11amilton-31cobi

equation for u; therefore, in principle, to Finid the excited

sets I' t we need only find -.omo' funct ion i,:, T" .mc'h that

-36-
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(6.6) r z {xlg(x) 0 O}

and then solve (6.5) subject to the initial condition

(6.7) u(x,O) g(x) (x ERIm).

The sets rt are then given by (6.2).

However, in addition to the obvious objection that (6.5),

(6.7) will in general have no smooth solution for large time,

it is not immediately clear that our calculation of

rt = {xlu(t,x) >0} is independent of the choice of g. As

we will see in §7 below a formal calculation using

characteristics indicates that Ft does indeed only depend

upon g's satisfying (6.6) and not on the particular choice of

this function. Nevertheless a rigorous proof cannot use

characteristics (which need not exist in the large) and will

instead rely upon our game theoretic representation formulas

for the viscosity solution of (6.5), (6.7).

Remark For the case at hand H(x,.) is convex and so con-

trol theory, rather than game theory, techniques will wor,.

A point of the next section is therefore that the homogeneity

and not the convexity of H(x,.) is the cruc ial property.

The reader should also note in the above context that Huvqen's

principle is a version of the ontimality principle in dvnamic

programming.
0
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7. Level sets

Motivated by considerations in 'q6 we now prove

Theorem 7.1. Let H: IRmxR m" -IR t, - ormlV Lipschitz and

positively homogeneous of degree 1 in its second argument.

Assume g, g are bounded,uniformly Lipschitz and are positive

on the same set; that is,

(7.1) f x EIm I g (x )  > 0} : x ( IR l  Cx)  > 0}.

Suppose u, u are the viscosity solutions of, respectively,

u ut + H(x,Du) = 0 (t > 0, x E Ilm)

(7.2)

u(O,x) g(x)

and f ut + H(x,Du) =0 Ct -0 , x< E F

1U(0,X) g(x)

Then for each T>O

(7.4) fx E Im Iu(Tx) > 0 {x I *.(T,x) 01

Note that we do not require H to be convex in p, and

that "0" in (7.1), (7.4) can bc replaced by any real nutlbor'.
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Formal proof

For heuristic purposes we begin with a formal proof of

(7.4). under the additional assumDtions

H ( C1  for p 0 0, u, u E C2 I

V. 5)a 0 zg > 0) a( > • 0) is a smooth manifold ,

DI , Di 0 0 on 0 "

Consider first (7.2), and for each x0Etm define the character-

istics x,p: [0,-) -e as follows:

(7.6 *(t) =DpHlxlt),p(t)), x(0) = x0

(7.6)
* P (t) -DxH(x(t),p(t)), p(0) = p0

for p0 v Dg(xo). Since u is C2, we have

p(t) Du(t,x(t)) (t > 0)

and

u(t,x(t)) - g(x0 ) + J[H(x(s)'p(s)) - p(s).DpH(x(s),p(s))]ds

0

But

(7.7) H * p.D H

since H is homogeneous of degree one; consequently

(7.8) u(t,x(t)) w g(x0). (t . 0)
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In particular

(7.9) u(t,x(t)) * 0 if x0  Z0

We next claim that

PO n.g(x0 )

(7.10) x( ) depends only on x0  and T0 --- - .

Ipol IDg(xo)l

To see this set

((t) (t > 0)n~t) • p(t)!

and compute

IT (P'6 )P
T= P -IPl

- -DxH(x,p) (p.DxH(x,p))p

fpj IpI 3

-D xH(x4 + (n.DxH(x,-n))1, (t > 0)

since H and therefore DxH are homogeneous of degree one.

On the other hand DpH is homogeneous of degree zero and so

S Dp H(x,p) D pH(x,q)

Thus

D "DH(X,nI), x(0) Z x0

(- -DxH(x,) (r.DxH(x,1))n, n(O) -no
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this proves (7.10).

Finally let ,: 0,-] m be the characteristics

for U:

(7.12) = DpH( ), (0) x 0

p = -D XH(X ,p)s p(O) :PO

where

p0  D-g(x,)

P Dg(xPoAs above x(.) depends only on 0= - -

Hence if xo0EZ0, 0=I ; and thus

X(t) X*(t) (t > 0)

Since therefore u(t,x(t)) 0 and since both u and

are constant along characteristics, we have

f x (Iun u(t,x) = 0} {x E IRn Iu(t,x) = 0} (t 0 0).

This completes the formal proof of (7.4).

A rigorous proof along the lines above seems unlikely,
C 1

as the solutions u, u are generally not even C , the

characteristics may cross, p or p may equal zero, etc.

Instead we use the game theoretic representation of the

solution afforded by Theorem 5.1. Here we r'egard the

(approximate) optimal tralectories as being (approximate)

-41-
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generalized characteristics.

Proof of Theorem 7.1

According to Lemma 5.4

H(x,p) max min (f(x,y,z).p} (p, x E mRm)

z(Z y(Y

for appropriate compact sets Y, Z, and f satisfying (2.1).

Thus u is the viscosity solution of

ut + max min { f(x,y,z).Dul 0
z(Z yEY

(7.13)

u(xO) g(x)

Fix any T>O and set

U(t,x) u(T-t,x) (0 !5 t f T, x m)

then U is the viscosity solution of

f Ut + min max {-f(x,y,z)'DU}
zEZ yEY

U(T,x) = g(x)

Thus, by the uniqueness of viscosity solutions,

U(tx) sup inf { ,(x('r))}
aEr(t) zfN(t)

where

-42-



(7. ) (S =-f(x(s),a[z](s),z(s)) (t -s .-T)

(7.14)

x(t) x

Similarly define

U(t,x) = u(T-t,x) (0 - t - T, x ERM

so that

U(t,x) sup inf f j(x(T))}
a(r(t) zEN(t)

x(.) solving (7.14).

Next assume

(7.15) u(T,x0) > 0;

then

U(0,x0 ) sup inf {g(x(T))) > 0

afr(o) z(N(O)

Fix

0 < 2e < U(0,x0)

and then choose acr(o) such that

(7.16) inf {g(x(T))} >
z(N(0)

x(') solving
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VS) a -f(x(s),a[z](s),z(s)) (0 < s T)

(7.17)f

(0) x x 0

Thus for any zENCO),

x(T) E (> ) i (e >a)

for some a = 0(E) > 0. Consequently

inf ( j(x(T))} ) a,
zEN(0)

x(.) solving (7.17). Therefore

u(T,xO) U(O,xO ) sup inf fg(x(T))} > 0.
acr(o) zeN(O)

We have proved u(T,x0 ) > 0 implies u(T,x 0 ) > 0, and the

opposite implication follows from interchanging u and

in the argument above. This proves (7.4).
0
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Hamilton-Jacobi PDE. We also employ these formulas to study a problem from
geometric optics.
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